

pennState

I. PROJECT BACKGROUND II. ANALYSIS #1: TECHNOLOGY IN THE FIELD III. ANALYSIS #2: FAÇADE RE-SEQUENCE IV. ANALYSIS #3: COMMISSIONING LAB SPACES V. ANALYSIS #4: GREEN ROOF ADDITION VI. SUMMARY VII.ACKNOWLEDGEMENTS VIII.QUESTIONS

UNIVERSITY OF PITTSBURGH CHEVRON ANNEX

PENN STATE AE SENIOR CAPSTONE PROJECT

ROBERT MROSKEY | CONSTRUCTION OPTION ADVISOR: DR. CHIMAY ANUMBA

OWNER & BACKGROUND INFO

PROJECT BACKGROUND I. OWNER & BACKGROUND INFO OWNER & BACKOROUND INFO II. STRE PLAN ANALYSIS #1: TECHNOLOGY IN THE FIELD III. ANALYSIS #2: FAZADE RE-SEQUENCE V. ANALYSIS #2: ACADE RE-SEQUENCE V. ANALYSIS #2: COMMISSIONING LAB SPACES V. ANALYSIS #2: GREEN ROOF ADDITION VI. ACKNOWLEDGEMENTS VII. ACKNOWLEDGEMENTS VIII. QUESTIONS

PROJECT PARTICIPANTS

OWNER | THE UNIVERSITY OF PITTSBURGH ARCHITECT | WILSON ARCHITECTS GENERAL CONTRACTOR | BURCHICK CONSTRUCTION STRUCTURAL ENGINEER | BARBER & HOFFMAN, INC. MEP/FP | AFFILIATED ENGINEERS, INC. CIVIL ENGINEERS | THE GATEWAY ENGINEERS, INC.

PROJECT PARAMETERS

PROJECT COST | \$25 M SIZE | 35,000 SF BUILDING LOCATION | PITTSBURGH, PA DURATION | NOV. 2009 – SEPT. 2011 PROJECT DELIVERY METHOD | DESIGN-BID-BUILD

3

OWNER & BACKGROUND INFO

- I.
 PROJECT BACKGROUND

 I.
 OWNER & BACKGROUND INFO

 II.
 STRE PLAN

 III.
 ANALYSIS #1-TECHNOLOGY IN THE FIELD

 III.
 ANALYSIS #1-TECHNOLOGY IN THE FIELD

 III.
 ANALYSIS #1-COMMISSIONING LAB SPACES

 VV.
 ANALYSIS #3 COMMISSIONING LAB SPACES

 VV.
 ANALYSIS #3 COMMISSIONING LAB SPACES

 VI.
 SUMMARY

 VII.
 ACKNULEDGEMENTS

 VIII.
 QUESTIONS

BUILDING LAYOUT

CONSTRUCTION LOGISTICS 2 PHASE PROJECT – RENOVATION & VERT ADDITION

- ➤ 2 CHEMICAL RESEARCH FLOORS
- ➤ 1 MECHANICAL PENTHOUSE

FAÇADE SYSTEMS FERRA COTTA METAL PANELS LOUVERS

- > GLAZING
- LEED GOLD

PROJECT BACKGROUND I. OWNER & BACKGROUND INFO

- OWNER & BACKGROUND INFO
 II. SITE PLAN
 II. ANALYSIS #1: TECHNOLOGY IN THE FIELD
 III. ANALYSIS #1: TECHNOLOGY IN THE FIELD
 III. ANALYSIS #2: FACADE RE-SEQUENCE
 V. ANALYSIS #2: COMMISSIONING LAB SPACES
 V. ANALYSIS #4: GREEN ROOF ADDITION
 VII. ACKNOWLEDGEMENTS
 VIII. ACKNOWLEDGEMENTS
 VIII. QUESTIONS

OWNER & BACKGROUND INFO

BUILDING SYSTEMS

MEP SYSTEMS

- > ADDITION SERVICE BY 3 NEW AHU'S
- ➤ (3) LABORATORY EXHAUST FANS
- ➤ (1) 1500 kW EMERGENCY GENERATOR
- > 300 kVA TRANSFORMER
- ▶ 1600 A MAIN SWITCHBOARD

- STRUCTURAL STEEL
- ➢ STILT-LIKE STRUCTURE SUPPORTED BY PILE CAPS
- ➢ BRACED FRAMES TO RESIST SHEAR AND LATERAL LOADS

SITE PLAN

PROBLEM IDENTIFICATION

CASE STUDIES

I. PROJECT BACKGROUND II. ANALYSIS #1: TECHNOLOGY IN THE FIELD II. CASE STUDIES III MAPLEMENTATION
 IIII MAPLEMENTATION
 IIII ANALYSIS #2: FAÇADE RE-SEQUENCE
 IV. ANALYSIS #3: COMMISSIONING LAB SPACES
 V. ANALYSIS #3: GREEN ROOF ADDITION
 VI. SUMMARY
 ACKNOWLEDGEMENTS
 VII. QUESTIONS

BALFOUR BEATTY SUFFOLK CONSTRUCTION

BOND BROTHERS

VELA SYSTEMS

VELA WEB

- ➢ ISSUES & PUNCHLISTS
- ➢ QA/QC
 - SAFETY
 - ➤ COMMISSIONING
- VELA MOBILE
 - ➢ IPAD OR SMART PHONE
 - ➢ DOCUMENTS, CHECKLISTS, ETC.
- > VELA REPORTS
- FIELD BIM

II. CASE STUDIES

I. PROJECT BACKGROUND II. ANALYSIS #1: TECHNOLOGY IN THE FIELD

CASE STUDIES

BALFOUR BEATTY

➢ VELA SYSTEMS & iPADS COMPANY-WIDE

- ▶ PROTECTIVE CASE
- ►LOW COST
- LONG BATTERY LIFE
- EASE-OF USE
- ➢ REDUCTION IN GENERAL CONDITIONS
- ► INCREASED EFFICIENCY
- ➢ REDUCED RISK

Balfour Beatty Construction

II. CASE STUDIES

I. PROJECT BACKGROUND II. ANALYSIS #1: TECHNOLOGY IN THE FIELD

II. LARS USUBLES
 III. IMPLEMENTATION
 III. IMPLEMENTATION
 III. ANALYSIS #2: FACADE RE-SEQUENCE
 II. ANALYSIS #3: COMMISSIONING LAB SPACES
 V. ANALYSIS #3: COMMISSIONING LAB SPACES
 V. SUMMARY
 IV. SUMMARY
 VII. ACKNOWLEDGEMENTS
 VIII. QUESTIONS

CASE STUDIES

SUFFOLK CONSTRUCTION

WASTED TIME COMMUNICATING MEETING MINUTES

- ► INCREASE IN:
- ➢ PERSONAL PRODUCTIVITY
- ➢ PROJECT ACCELERATION
- ➢ RISK REDUCTION
- ➤ COST OF QUALITY

II. CASE STUDIES

I. PROJECT BACKGROUND II. ANALYSIS #1: TECHNOLOGY IN THE FIELD

II. LARS USUBLES
 III. IMPLEMENTATION
 III. IMPLEMENTATION
 III. ANALYSIS #2: FACADE RE-SEQUENCE
 II. ANALYSIS #3: COMMISSIONING LAB SPACES
 V. ANALYSIS #3: COMMISSIONING LAB SPACES
 V. SUMMARY
 IV. SUMMARY
 VII. ACKNOWLEDGEMENTS
 VIII. QUESTIONS

CASE STUDIES

BOND BROTHERS

- ➤ COMMISSIONING OF HARVARD LAB
- ELIMINATED NEED FOR PAPER
- ➤ TABLET PC'S:
 - ➢ VIEW DRAWINGS
 - ➤ MARK UP DRAWINGS
 - ➢ PUNCHLIST
 - ➤ HANDOVER DOCUMENT SET

I. PROJECT BACKGROUND II. ANALYSIS #1: TECHNOLOGY IN THE FIELD

- II. CASE STUDIESS
 III. IMPLEMENTATION
 III. ANALYSIS #2: FAÇADE RE-SEQUENCE
 IV. ANALYSIS #3: COMMISSIONING LAB SPACES
 V. ANALYSIS #3: COMMISSIONING LAB SPACES
 V. SUMMARY
 VII. AUCHNARY
 VII. AUCHNARY
 VII. AUCHNARY

IMPLEMENTATION

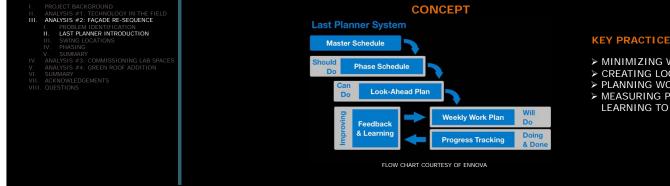
BENEFITS & SAVINGS

	Potential 3	Savings A	ssoc	lated v	MIT	n i	lechno	blogy	/ IN	
	Worker	Rate	the	Foiedday	Proj Dav		Total Hours	Total	Cost	
	Superintendent	\$ 54.03	\$/br	3 83		186	1 863 00	\$ 100	661 F	2
F	Superintendent COSTS V	without™Te	cĥ'n	olöğy		- \$	¹ 186300 160,	328°.'	Ŧ2	~
	Foreman	\$ 48.80	\$/hr	1.00		486	486.00	\$ 23,	716.8	0
		cħnoloფy∞	ଅଷ୍ଟ	S 1.00		48 \$	48660	585?()() .(0
	Project Manager	\$ 50.00	\$/hr	1.00						0
	Potential Savings					\$	144,:	243.4	42	2

COSTS ASSOCIATED POTENDIAL BANNORS GY IN THE FIELD

Technology Type Cost Quantity Total Cost TECHNIQLOGY SHOULD HAVE BEEIN1.00 USE:D:BQNasTHE CHEVRON ANNEX 210.00
 AN DetFibeForRE
 PROJECTS
 1.00
 \$ 11,064.00

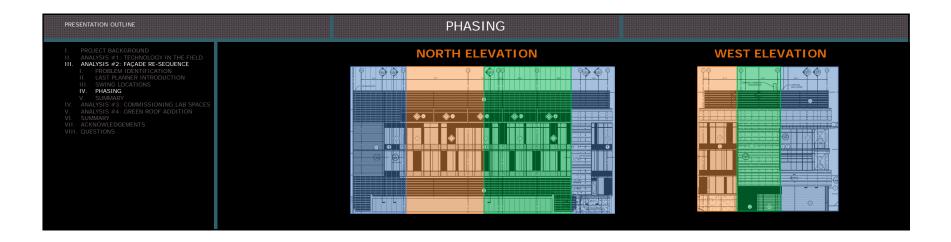
 Vela Training
 \$ 2,500.00
 1.00
 \$ 2,500.00


 Total
 \$ 16,585.00

ESTIMATED TECHNOLOGY COSTS

PROBLEM IDENTIFICATION

LAST PLANNER INTRODUCTION



KEY PRACTICES OF THE LAST PLANNER SYSTEM:

- MINIMIZING WORK VARIABILITY BETWEEN TASKS
- ➢ CREATING LOOK-AHEAD PLANS
- ➢ PLANNING WORK ON WEEKLY BASIS
- MEASURING PROGRESS AND USING WEEKLY LEARNING TO IMPROVE WORK PRACTICES

SWING LOCATIONS I. PROJECT BACKGROUND II. ANALYSIS #1: TECHNOLOGY IN THE FIELD III. ANALYSIS #2: FACADE RE-SEQUENCE I. PROBLEM IDENTIFICATION II. LAST PLANNER INTRODUCTION III. SWIG LOCATIONS IV: PHASING V SUMMARY V. SUMMARY V. ANALYSIS #3: COMMISSIONING LAB SPACES V. ANALYSIS #3: COMMISSIONING LAB SPACES V. ANALYSIS #4: GREEN ROOF ADDITION VII. ACKNOWLEDGEMENTS VIII. QUESTIONS 14 \mathbb{Z} . 67 $\mathbf{\nabla}$ i –

SUMMARY

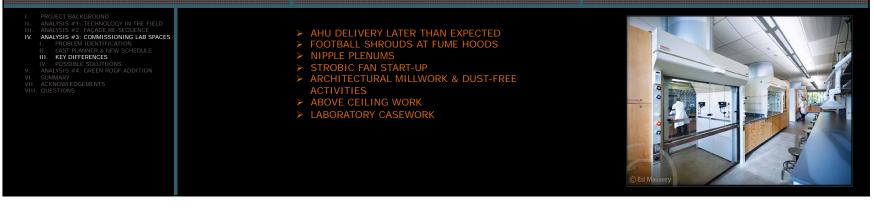
PROJECT BACKGROUND
AMALYSIS #1: FERMOLOGY IN THE FIELD
AMALYSIS #2: FERMOLOGY FRESOURCE
PROBLEM DENTIFICATION

PROJECT BACKGROUND
 ANALYSIS #1: TECHNOLOGY IN THE FIELD
 ANALYSIS #2: FACADE PE-SEQUENCE
 ANALYSIS #2: FACADE PE-SEQUENCE
 ANALYSIS #2: COMMISSIONING LAB SPACES
 ANALYSIS #2: ACMUSSIONING LAB SPACES
 ANALYSIS #2: ACMUSSIONING LAB SPACES
 V. ANALYSIS #2: ACMUSSIONING LAB SPACES
 V. ANALYSIS #2: ACMUSSIONING LAB SPACES
 V. ANALYSIS #2: ACMUSSIONING LAB SPACES
 VI. ACKNOVELDGEMENTS
 VII. ACKNOVELDGEMENTS
 VII. OUESTIONS

PROBLEM IDENTIFICATION

- LABS HAD TO BE "DUST-FREE" BEFORE TAB COULD BEGIN
 CHEVRON TOWER WAS IN NEGATIVE AIR CONDITION, SUCKING DIRT FROM THE PROJECT INTO THE EXISTING BUILDING
 COMMISSIONING AGENT WAS CONTRACTED DIRECTLY WITH THE OWNER

IV. ANALYSIS #2: PAGADE RESISTONING LAB SPACES I. PROBLEM IDENTIFICATION II. LAST PLANNER & NEW SCHEDULE


LAST PLANNER & NEW SCHEDULE

KEY MILESTONES

> AHU DELIVERY DATE
 > STROBIC FAN START-UP
 > L&I INSPECTIONS
 > ABOVE CEILING WORK
 > TESTING AND BALANCING

KEY DIFFERENCES

IV. ANALYSIS #3: COMMISSIONING LAB SPACES

III. REY DIFFERENCES
 IV. POSSIBLE SOLUTIONS
 V. ANALYSIS #4: GREEN ROOF ADDITION
 SUMMARY
 VII. ACKNOWLEDGEMENTS
 VIII. QUESTIONS

POSSIBLE SOLUTIONS

COMMISSIONING AGENT

- ➢ GET INVOLVED IN THE PROJECT DURING THE DESIGN PHASE
- ➢ REQUIRE TO MAKE VISITS TO THE PROJECT SITE ROUTINELY
- ➤ SAME CX AGENT PERFORMING:
 - > SUBMITTAL & RFI REVIEWS
 - ➤ TESTING & BALANCING

- > PREFABRICATION
 > ADEQUATE SCOPE INFORMATION
- ≻ TECHNOLOGY IN THE FIELD

PROJECT BACKGROUND ANALYSIS #1: TECHNOLOGY IN THE FIELD ANALYSIS #2: FAÇADE RE-SEQUENCE COMMISSIONING LAB SPACES

ANALYSIS #4: GREEN ROOF ADDITION

II. STRUCTURAL BREADTH I. ADDITIONAL LOADS

VI. ACKNOWLEDGEMENTS VI. CONCLUSIONS VI. SUMMARY VII. ACKNOWLEDGEMENTS VIII. QUESTIONS

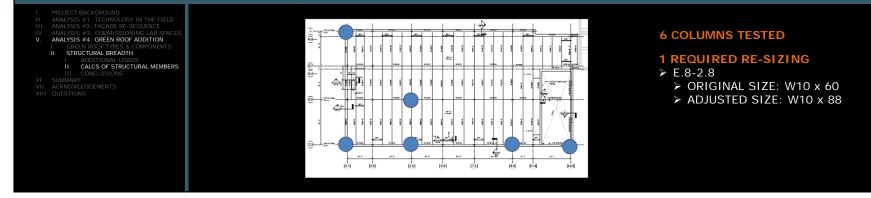
ADDITIONAL LOADS

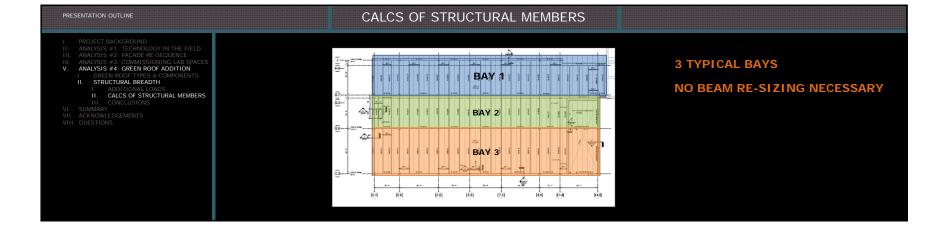
STRUCTURAL BREADTH

ADDITIONAL LOADINGS COLUMN LOAD CHECKS BEAM LOAD CHECKS GIRDER LOAD CHECKS

ORIGINAL LOADINGS

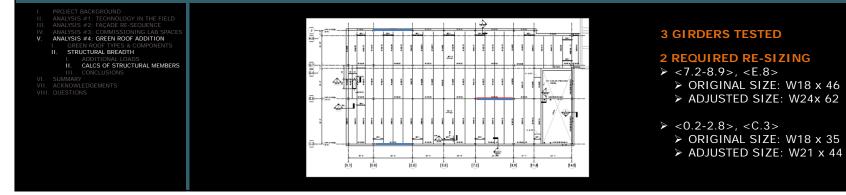
ROOF DEAD LOAD - 30 PSF ROOF LIVE LOAD - 30 PSF


NEW LOADINGS ROOF DEAD LOAD - 90 PSF


ROOF LIVE LOAD - 100 PSF

- COLUMNS ≻ E.8-2.8
- GIRDERS
 - - ≻ W18X46 → W24X62

 - \succ W18X35 → W21X44


CALCS OF STRUCTURAL MEMBERS

CALCS OF STRUCTURAL MEMBERS

PROJECT BACKGROUND ANALYSIS #1: TECHNOLOGY IN THE FIELD III. ANALYSIS #2: FAÇADE RE-SEQUENCE W. ANALYSIS #3: GREEN ROOF ADDITION L. GREEN ROOF VPES & COMPONENTS II. STRUCTURAL BREADTH I. ADDITIONAL LOADS II. CONCLUSIONS VI. SUMMARY VII. ACKNOWLEDGEMENTS VIII. OUESTIONS

CONCLUSIONS OF STRUCTURAL BREADTH

GREEN ROOFS ADD A SIGNIFICANT AMOUNT OF LOAD TO THE STRUCTURE

GREEN ROOFS REQUIRE ADDITIONAL STRUCTURAL REINFORCEMENT

- VI. SUMMARY VI. SUMMARY VII. ACKNOWLEDGEMENTS VIII. QUESTIONS

SUMMARY

ANALYSIS 1

➢ TECHNOLOGY SHOULD BE IMPLEMENTED ON THE CHEVRON ANNEX AND FUTURE PROJECTS

ANALYSIS 2

➢ PROPER PLANNING CAN LEAD TO AN EFFICIENT INSTALLATION PROCESS

ANALYSIS 3

➢ COMMISSIONING IS AFFECTED BY ALL TRADES

ANALYSIS 4

➢ ADDING A GREEN ROOF SHOULD BE A DECISION MADE BY THE OWNER

I. PROJECT BACKGROUND

III. ANALYSIS #2: FAÇADE RE-SEQUENCE

V. ANALYSIS #4: GREEN ROOF ADDITION

VII. ACKNOWLEDGEMENTS VIII. QUESTIONS

ACKNOWLEDGEMENTS

BURCHICK CONSTRUCTION

DAVE MEUSCHKE JOE SCARAMUZZO AMANDA MYERS

ACADEMIC

DR. CHIMAY ANUMBA: ADVISOR PENN STATE FACULTY & STAFF

SPECIAL THANKS

BURCHICK CONSTRUCTION FAMILY & FRIENDS

